52 research outputs found

    Transformer-based Time-to-Event Prediction for Chronic Kidney Disease Deterioration

    Full text link
    Deep-learning techniques, particularly the transformer model, have shown great potential in enhancing the prediction performance of longitudinal health records. While previous methods have mainly focused on fixed-time risk prediction, time-to-event prediction (also known as survival analysis) is often more appropriate for clinical scenarios. Here, we present a novel deep-learning architecture we named STRAFE, a generalizable survival analysis transformer-based architecture for electronic health records. The performance of STRAFE was evaluated using a real-world claim dataset of over 130,000 individuals with stage 3 chronic kidney disease (CKD) and was found to outperform other time-to-event prediction algorithms in predicting the exact time of deterioration to stage 5. Additionally, STRAFE was found to outperform binary outcome algorithms in predicting fixed-time risk, possibly due to its ability to train on censored data. We show that STRAFE predictions can improve the positive predictive value of high-risk patients by 3-fold, demonstrating possible usage to improve targeting for intervention programs. Finally, we suggest a novel visualization approach to predictions on a per-patient basis. In conclusion, STRAFE is a cutting-edge time-to-event prediction algorithm that has the potential to enhance risk predictions in large claims datasets

    Widespread parainflammation in human cancer.

    Get PDF
    BackgroundChronic inflammation has been recognized as one of the hallmarks of cancer. We recently showed that parainflammation, a unique variant of inflammation between homeostasis and chronic inflammation, strongly promotes mouse gut tumorigenesis upon p53 loss. Here we explore the prevalence of parainflammation in human cancer and determine its relationship to certain molecular and clinical parameters affecting treatment and prognosis.ResultsWe generated a transcriptome signature to identify parainflammation in many primary human tumors and carcinoma cell lines as distinct from their normal tissue counterparts and the tumor microenvironment and show that parainflammation-positive tumors are enriched for p53 mutations and associated with poor prognosis. Non-steroidal anti-inflammatory drug (NSAID) treatment suppresses parainflammation in both murine and human cancers, possibly explaining a protective effect of NSAIDs against cancer.ConclusionsWe conclude that parainflammation, a low-grade form of inflammation, is widely prevalent in human cancer, particularly in cancer types commonly harboring p53 mutations. Our data suggest that parainflammation may be a driver for p53 mutagenesis and a guide for cancer prevention by NSAID treatment

    Comprehensive analysis of normal adjacent to tumor transcriptomes.

    Get PDF
    Histologically normal tissue adjacent to the tumor (NAT) is commonly used as a control in cancer studies. However, little is known about the transcriptomic profile of NAT, how it is influenced by the tumor, and how the profile compares with non-tumor-bearing tissues. Here, we integrate data from the Genotype-Tissue Expression project and The Cancer Genome Atlas to comprehensively analyze the transcriptomes of healthy, NAT, and tumor tissues in 6506 samples across eight tissues and corresponding tumor types. Our analysis shows that NAT presents a unique intermediate state between healthy and tumor. Differential gene expression and protein-protein interaction analyses reveal altered pathways shared among NATs across tissue types. We characterize a set of 18 genes that are specifically activated in NATs. By applying pathway and tissue composition analyses, we suggest a pan-cancer mechanism of pro-inflammatory signals from the tumor stimulates an inflammatory response in the adjacent endothelium

    Digitally deconvolving the tumor microenvironment

    Get PDF
    corecore